70 research outputs found

    Social Behaviours under Anaerobic Conditions in Pseudomonas aeruginosa

    Get PDF
    Pseudomonas aeruginosa is well adapted to grow in anaerobic environments in the presence of nitrogen oxides by generating energy through denitrification. Environmental cues, such as oxygen and nitrogen oxide concentrations, are important in regulating the gene expression involved in this process. Recent data indicate that P. aeruginosa also employs cell-to-cell communication signals to control the denitrifying activity. The regulation of denitrification by these signalling molecules may control nitric oxide production. Nitric oxide, in turn, functions as a signalling molecule by activating certain regulatory proteins. Moreover, under denitrifying conditions, drastic changes in cell physiology and cell morphology are induced that significantly impact group behaviours, such as biofilm formation

    What will membrane vesicles (MVs) bring to bacterial communication?

    Get PDF

    Ratio of electron donor to acceptor influences metabolic specialization and denitrification dynamics in Pseudomonas aeruginosa in a mixed carbon medium

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Zhang, I. H., Mullen, S., Ciccarese, D., Dumit, D., Martocello, D. E., Toyofuku, M., Nomura, N., Smriga, S., & Babbin, A. R. Ratio of electron donor to acceptor influences metabolic specialization and denitrification dynamics in Pseudomonas aeruginosa in a mixed carbon medium. Frontiers in Microbiology, 12, (2021): 711073, https://doi.org/10.3389/fmicb.2021.711073.Denitrifying microbes sequentially reduce nitrate (NO3–) to nitrite (NO2–), NO, N2O, and N2 through enzymes encoded by nar, nir, nor, and nos. Some denitrifiers maintain the whole four-gene pathway, but others possess partial pathways. Partial denitrifiers may evolve through metabolic specialization whereas complete denitrifiers may adapt toward greater metabolic flexibility in nitrogen oxide (NOx–) utilization. Both exist within natural environments, but we lack an understanding of selective pressures driving the evolution toward each lifestyle. Here we investigate differences in growth rate, growth yield, denitrification dynamics, and the extent of intermediate metabolite accumulation under varying nutrient conditions between the model complete denitrifier Pseudomonas aeruginosa and a community of engineered specialists with deletions in the denitrification genes nar or nir. Our results in a mixed carbon medium indicate a growth rate vs. yield tradeoff between complete and partial denitrifiers, which varies with total nutrient availability and ratios of organic carbon to NOx–. We found that the cultures of both complete and partial denitrifiers accumulated nitrite and that the metabolic lifestyle coupled with nutrient conditions are responsible for the extent of nitrite accumulation.Funding for this work was provided by Simons Foundation award 622065 and an MIT Environmental Solutions Initiative seed grant to AB. Additional support was received by the MIT Ferry Fund

    A Versatile and Rapidly Deployable Device to Enable Spatiotemporal Observations of the Sessile Microbes and Environmental Surfaces

    Get PDF
    Although microbes typically associate with surfaces, detailed observations of surface-associated microbes on natural substrata are technically challenging. We herein introduce a flow channel device named the Stickable Flow Device, which is easily configurable and deployable on various surfaces for the microscopic imaging of environmental microbes. We demonstrated the utility of this device by creating a flow channel on different types of surfaces including live leaves. This device enables the real-time imaging of bacterial biofilms and their substrata. The Stickable Flow Device expands the limits of conventional real-time imaging systems, thereby contributing to a deeper understanding of microbe-surface interactions on various surfaces

    Prophage-triggered membrane vesicle formation through peptidoglycan damage in Bacillus subtilis

    Get PDF
    Bacteria release membrane vesicles (MVs) that play important roles in various biological processes. However, the mechanisms of MV formation in Gram-positive bacteria are unclear, as these cells possess a single cytoplasmic membrane that is surrounded by a thick cell wall. Here we use live cell imaging and electron cryo-tomography to describe a mechanism for MV formation in Bacillus subtilis. We show that the expression of a prophage-encoded endolysin in a sub-population of cells generates holes in the peptidoglycan cell wall. Through these openings, cytoplasmic membrane material protrudes into the extracellular space and is released as MVs. Due to the loss of membrane integrity, the induced cells eventually die. The vesicle-producing cells induce MV formation in neighboring cells by the enzymatic action of the released endolysin. Our results support the idea that endolysins may be important for MV formation in bacteria, and this mechanism may potentially be useful for the production of MVs for applications in biomedicine and nanotechnology

    Membrane vesicle-mediated bacterial communication

    Get PDF
    The classical quorum-sensing (QS) model is based on the assumption that diffusible signaling molecules accumulate in the culture medium until they reach a critical concentration upon which expression of target genes is triggered. Here we demonstrate that the hydrophobic signal N-hexadecanoyl-L-homoserine lactone, which is produced by Paracoccus sp., is released from cells by the aid of membrane vesicles (MVs). Packed into MVs, the signal is not only solubilized in an aqueous environment but is also delivered with varying propensities to different bacteria. We propose a novel MV-based mechanism for binary trafficking of hydrophobic signal molecules, which may be particularly relevant for bacteria that live in open aqueous environments

    Roadmap on emerging concepts in the physical biology of bacterial biofilms: from surface sensing to community formation

    Get PDF
    Bacterial biofilms are communities of bacteria that exist as aggregates that can adhere to surfaces or be free-standing. This complex, social mode of cellular organization is fundamental to the physiology of microbes and often exhibits surprising behavior. Bacterial biofilms are more than the sum of their parts: single-cell behavior has a complex relation to collective community behavior, in a manner perhaps cognate to the complex relation between atomic physics and condensed matter physics. Biofilm microbiology is a relatively young field by biology standards, but it has already attracted intense attention from physicists. Sometimes, this attention takes the form of seeing biofilms as inspiration for new physics. In this roadmap, we highlight the work of those who have taken the opposite strategy: we highlight the work of physicists and physical scientists who use physics to engage fundamental concepts in bacterial biofilm microbiology, including adhesion, sensing, motility, signaling, memory, energy flow, community formation and cooperativity. These contributions are juxtaposed with microbiologists who have made recent important discoveries on bacterial biofilms using state-of-the-art physical methods. The contributions to this roadmap exemplify how well physics and biology can be combined to achieve a new synthesis, rather than just a division of labor

    Types and origins of bacterial membrane vesicles

    Full text link
    Most bacteria release membrane vesicles (MVs) that contain specific cargo molecules and have diverse functions, including the transport of virulence factors, DNA transfer, interception of bacteriophages, antibiotics and eukaryotic host defence factors, cell detoxification and bacterial communication. MVs not only are abundant in nature but also show great promise for applications in biomedicine and nanotechnology. MVs were first discovered to originate from controlled blebbing of the outer membrane of Gram-negative bacteria and are therefore often called outer-membrane vesicles (OMVs). However, recent work has shown that Gram-positive bacteria can produce MVs, that different types of MVs besides OMVs exist and that, in addition to membrane blebbing, MVs can also be formed by endolysin-triggered cell lysis. In this Review, we provide an overview of the structures and compositions of the various vesicle types and discuss novel formation routes, which may lead to distinct vesicle types that serve particular functions

    ベシクルを介した微生物間ネットワークの解明とそのデザイン方法の創出

    Get PDF
    科学研究費助成事業 研究成果報告書:若手研究(A)2013-2016課題番号 : 2570101
    corecore